148 research outputs found

    Implicit field learning for unsupervised anomaly detection in medical images

    Get PDF
    We propose a novel unsupervised out-of-distribution detection method for medical images based on implicit fields image representations. In our approach, an auto-decoder feed-forward neural network learns the distribution of healthy images in the form of a mapping between spatial coordinates and probabilities over a proxy for tissue types. At inference time, the learnt distribution is used to retrieve, from a given test image, a restoration, i.e. an image maximally consistent with the input one but belonging to the healthy distribution. Anomalies are localized using the voxel-wise probability predicted by our model for the restored image. We tested our approach in the task of unsupervised localization of gliomas on brain MR images and compared it to several other VAE-based anomaly detection methods. Results show that the proposed technique substantially outperforms them (average DICE 0.640 vs 0.518 for the best performing VAE-based alternative) while also requiring considerably less computing time

    Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction

    Get PDF
    In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks. However, successfully learning these features requires a large amount of manually annotated data, which is expensive to acquire and limited by the available resources of expert image analysts. Therefore, unsupervised, weakly-supervised and self-supervised feature learning techniques receive a lot of attention, which aim to utilise the vast amount of available data, while at the same time avoid or substantially reduce the effort of manual annotation. In this paper, we propose a novel way for training a cardiac MR image segmentation network, in which features are learnt in a self-supervised manner by predicting anatomical positions. The anatomical positions serve as a supervisory signal and do not require extra manual annotation. We demonstrate that this seemingly simple task provides a strong signal for feature learning and with self-supervised learning, we achieve a high segmentation accuracy that is better than or comparable to a U-net trained from scratch, especially at a small data setting. When only five annotated subjects are available, the proposed method improves the mean Dice metric from 0.811 to 0.852 for short-axis image segmentation, compared to the baseline U-net

    Anomaly detection through latent space restoration using vector-quantized variational autoencoders

    Get PDF
    We propose an out-of-distribution detection method that combines density and restoration-based approaches using Vector-Quantized Variational Auto-Encoders (VQ-VAEs). The VQ-VAE model learns to encode images in a categorical latent space. The prior distribution of latent codes is then modelled using an Auto-Regressive (AR) model. We found that the prior probability estimated by the AR model can be useful for unsupervised anomaly detection and enables the estimation of both sample and pixel-wise anomaly scores. The sample-wise score is defined as the negative log-likelihood of the latent variables above a threshold selecting highly unlikely codes. Additionally, out-of-distribution images are restored into in-distribution images by replacing unlikely latent codes with samples from the prior model and decoding to pixel space. The average L1 distance between generated restorations and original image is used as pixel-wise anomaly score. We tested our approach on the MOOD challenge datasets, and report higher accuracies compared to a standard reconstruction-based approach with VAEs

    Deep Learning using K-space Based Data Augmentation for Automated Cardiac MR Motion Artefact Detection

    Get PDF
    Quality assessment of medical images is essential for complete automation of image processing pipelines. For large population studies such as the UK Biobank, artefacts such as those caused by heart motion are problematic and manual identification is tedious and time-consuming. Therefore, there is an urgent need for automatic image quality assessment techniques. In this paper, we propose a method to automatically detect the presence of motion-related artefacts in cardiac magnetic resonance (CMR) images. As this is a highly imbalanced classification problem (due to the high number of good quality images compared to the low number of images with motion artefacts), we propose a novel k-space based training data augmentation approach in order to address this problem. Our method is based on 3D spatio-temporal Convolutional Neural Networks, and is able to detect 2D+time short axis images with motion artefacts in less than 1ms. We test our algorithm on a subset of the UK Biobank dataset consisting of 3465 CMR images and achieve not only high accuracy in detection of motion artefacts, but also high precision and recall. We compare our approach to a range of state-of-the-art quality assessment methods.Comment: Accepted for MICCAI2018 Conferenc

    Ruthenium-thymine acetate binding modes: Experimental and theoretical studies

    Get PDF
    Ruthenium complexes have proved to exhibit antineoplastic activity, related to the interaction of the metal ion with DNA. In this context, synthetic and theoretical studies on ruthenium binding modes of thymine acetate (THAc) have been focused to shed light on the structure-activity relationship. This report deals with the reaction between dihydride ruthenium mer-[Ru(H)2(CO)(PPh3)3], 1 and the thymine acetic acid (THAcOH) selected as model for nucleobase derivatives. The reaction in refluxing toluene between 1 and THAcOH excess, by H2 release affords the double coordinating species k1-(O)THAc-, k2-(O,O)THAc-[Ru(CO)(PPh3)2], 2. The X-ray crystal structure confirms a simultaneous monohapto, dihapto- THAc coordination in a reciprocal facial disposition. Stepwise additions of THAcOH allowed to intercept the monohapto mer-k1(O)THAc-Ru(CO)H(PPh3)3] 3 and dihapto trans(P,P)-k2(O,O)THAc-[Ru(CO)H(PPh3)2] 4 species. Nuclear magnetic resonance (NMR) studies, associated with DFT (Density Function Theory)-calculations energies and analogous reactions with acetic acid, supported the proposed reaction path. As evidenced by the crystal supramolecular hydrogen-binding packing and 1H NMR spectra, metal coordination seems to play a pivotal role in stabilizing the minor [(N=C(OH)] lactim tautomers, which may promote mismatching to DNA nucleobase pairs as a clue for its anticancer activity

    Explainable Anatomical Shape Analysis through Deep Hierarchical Generative Models

    Get PDF
    Quantification of anatomical shape changes currently relies on scalar global indexes which are largely insensitive to regional or asymmetric modifications. Accurate assessment of pathology-driven anatomical remodeling is a crucial step for the diagnosis and treatment of many conditions. Deep learning approaches have recently achieved wide success in the analysis of medical images, but they lack interpretability in the feature extraction and decision processes. In this work, we propose a new interpretable deep learning model for shape analysis. In particular, we exploit deep generative networks to model a population of anatomical segmentations through a hierarchy of conditional latent variables. At the highest level of this hierarchy, a two-dimensional latent space is simultaneously optimised to discriminate distinct clinical conditions, enabling the direct visualisation of the classification space. Moreover, the anatomical variability encoded by this discriminative latent space can be visualised in the segmentation space thanks to the generative properties of the model, making the classification task transparent. This approach yielded high accuracy in the categorisation of healthy and remodelled left ventricles when tested on unseen segmentations from our own multi-centre dataset as well as in an external validation set, and on hippocampi from healthy controls and patients with Alzheimer's disease when tested on ADNI data. More importantly, it enabled the visualisation in three-dimensions of both global and regional anatomical features which better discriminate between the conditions under exam. The proposed approach scales effectively to large populations, facilitating high-throughput analysis of normal anatomy and pathology in large-scale studies of volumetric imaging
    • …
    corecore